mirror of
https://github.com/ikechan8370/chatgpt-plugin.git
synced 2025-12-15 12:57:10 +00:00
* feat: memory basic * fix: chaite ver * fix: update prompt * fix: memory cursor and extract prompt * fix: memory retrieval bug * fix: memory retrieval bug * fix: one more attempt by codex * fix: messages prompt error * fix: one more time by codex * fix: metrics by codex * fix: memory forward * fix: memory show update time
306 lines
11 KiB
JavaScript
306 lines
11 KiB
JavaScript
import { SendMessageOption, Chaite } from 'chaite'
|
||
import ChatGPTConfig from '../../config/config.js'
|
||
import { getClientForModel } from '../chaite/vectorizer.js'
|
||
|
||
function collectTextFromResponse (response) {
|
||
if (!response?.contents) {
|
||
return ''
|
||
}
|
||
return response.contents
|
||
.filter(content => content.type === 'text')
|
||
.map(content => content.text || '')
|
||
.join('\n')
|
||
.trim()
|
||
}
|
||
|
||
function parseJSON (text) {
|
||
if (!text) {
|
||
return null
|
||
}
|
||
const trimmed = text.trim()
|
||
const codeBlockMatch = trimmed.match(/^```(?:json)?\s*([\s\S]*?)\s*```$/i)
|
||
const payload = codeBlockMatch ? codeBlockMatch[1] : trimmed
|
||
try {
|
||
return JSON.parse(payload)
|
||
} catch (err) {
|
||
logger.warn('Failed to parse JSON from memory extractor response:', text)
|
||
return null
|
||
}
|
||
}
|
||
|
||
function formatEntry (entry) {
|
||
let str = ''
|
||
try {
|
||
if (typeof entry === 'string') {
|
||
str = entry
|
||
} else {
|
||
str = JSON.stringify(entry)
|
||
}
|
||
} catch (err) {
|
||
str = String(entry)
|
||
}
|
||
const limit = 200
|
||
return str.length > limit ? str.slice(0, limit) + '…' : str
|
||
}
|
||
|
||
function injectMessagesIntoTemplate (template, body) {
|
||
if (!template || typeof template !== 'string') {
|
||
return body
|
||
}
|
||
const placeholders = ['${messages}', '{messages}', '{{messages}}']
|
||
let result = template
|
||
let replaced = false
|
||
for (const placeholder of placeholders) {
|
||
if (result.includes(placeholder)) {
|
||
result = result.split(placeholder).join(body)
|
||
replaced = true
|
||
}
|
||
}
|
||
if (!replaced) {
|
||
const trimmed = result.trim()
|
||
if (!trimmed) {
|
||
return body
|
||
}
|
||
if (/\n\s*$/.test(result)) {
|
||
return `${result}${body}`
|
||
}
|
||
return `${result}\n${body}`
|
||
}
|
||
return result
|
||
}
|
||
|
||
async function resolvePresetSendMessageOption (presetId, scope) {
|
||
if (!presetId) {
|
||
return null
|
||
}
|
||
try {
|
||
const chaite = Chaite.getInstance?.()
|
||
if (!chaite) {
|
||
logger.warn(`[Memory] ${scope} extraction preset ${presetId} configured but Chaite is not initialized`)
|
||
return null
|
||
}
|
||
const presetManager = chaite.getChatPresetManager?.()
|
||
if (!presetManager) {
|
||
logger.warn(`[Memory] ${scope} extraction preset ${presetId} configured but preset manager unavailable`)
|
||
return null
|
||
}
|
||
const preset = await presetManager.getInstance(presetId)
|
||
if (!preset) {
|
||
logger.warn(`[Memory] ${scope} extraction preset ${presetId} not found`)
|
||
return null
|
||
}
|
||
logger.debug(`[Memory] using ${scope} extraction preset ${presetId}`)
|
||
return {
|
||
preset,
|
||
sendMessageOption: JSON.parse(JSON.stringify(preset.sendMessageOption || {}))
|
||
}
|
||
} catch (err) {
|
||
logger.error(`[Memory] failed to load ${scope} extraction preset ${presetId}:`, err)
|
||
return null
|
||
}
|
||
}
|
||
|
||
function resolveGroupExtractionPrompts (presetSendMessageOption) {
|
||
const config = ChatGPTConfig.memory?.group || {}
|
||
const system = config.extractionSystemPrompt || presetSendMessageOption?.systemOverride || `You are a knowledge extraction assistant that specialises in summarising long-term facts from group chat transcripts.
|
||
Read the provided conversation and identify statements that should be stored as long-term knowledge for the group.
|
||
Return a JSON array. Each element must contain:
|
||
{
|
||
"fact": 事实内容,必须完整包含事件的各个要素而不能是简单的短语(比如谁参与了事件、做了什么事情、背景时间是什么)(同一件事情尽可能整合为同一条而非拆分,以便利于检索),
|
||
"topic": 主题关键词,字符串,如 "活动"、"成员信息",
|
||
"importance": 一个介于0和1之间的小数,数值越大表示越重要,
|
||
"source_message_ids": 原始消息ID数组,
|
||
"source_messages": 对应原始消息的简要摘录或合并文本,
|
||
"involved_users": 出现或相关的用户ID数组
|
||
}
|
||
Only include meaningful, verifiable group-specific information that is useful for future conversations. Do not record incomplete information. Do not include general knowledge or unrelated facts. Do not wrap the JSON array in code fences.`
|
||
const userTemplate = config.extractionUserPrompt || `以下是群聊中的一些消息,请根据系统说明提取值得长期记忆的事实,以JSON数组形式返回,不要输出额外说明。
|
||
|
||
\${messages}`
|
||
return { system, userTemplate }
|
||
}
|
||
|
||
function buildGroupUserPrompt (messages, template) {
|
||
const joined = messages.map(msg => {
|
||
const sender = msg.nickname || msg.user_id || '未知用户'
|
||
return `${sender}: ${msg.text}`
|
||
}).join('\n')
|
||
return injectMessagesIntoTemplate(template, joined)
|
||
}
|
||
|
||
function buildExistingMemorySection (existingMemories = []) {
|
||
if (!existingMemories || existingMemories.length === 0) {
|
||
return '当前没有任何已知的长期记忆。'
|
||
}
|
||
const lines = existingMemories.map((item, idx) => `${idx + 1}. ${item}`)
|
||
return `以下是关于用户的已知长期记忆,请在提取新记忆时参考,避免重复已有事实,并在信息变更时更新描述:\n${lines.join('\n')}`
|
||
}
|
||
|
||
function resolveUserExtractionPrompts (existingMemories = [], presetSendMessageOption) {
|
||
const config = ChatGPTConfig.memory?.user || {}
|
||
const systemTemplate = config.extractionSystemPrompt || presetSendMessageOption?.systemOverride || `You are an assistant that extracts long-term personal preferences or persona details about a user.
|
||
Given a conversation snippet between the user and the bot, identify durable information such as preferences, nicknames, roles, speaking style, habits, or other facts that remain valid over time.
|
||
Return a JSON array of **strings**, and nothing else, without any other characters including \`\`\` or \`\`\`json. Each string must be a short sentence (in the same language as the conversation) describing one piece of long-term memory. Do not include keys, JSON objects, or additional metadata. Ignore temporary topics or uncertain information.`
|
||
const userTemplate = config.extractionUserPrompt || `下面是用户与机器人的对话,请根据系统提示提取可长期记忆的个人信息。
|
||
|
||
\${messages}`
|
||
return {
|
||
system: `${systemTemplate}
|
||
|
||
${buildExistingMemorySection(existingMemories)}`,
|
||
userTemplate
|
||
}
|
||
}
|
||
|
||
function buildUserPrompt (messages, template) {
|
||
const body = messages.map(msg => {
|
||
const prefix = msg.role === 'assistant' ? '机器人' : (msg.nickname || msg.user_id || '用户')
|
||
return `${prefix}: ${msg.text}`
|
||
}).join('\n')
|
||
return injectMessagesIntoTemplate(template, body)
|
||
}
|
||
|
||
async function callModel ({ prompt, systemPrompt, model, maxToken = 4096, temperature = 0.2, sendMessageOption }) {
|
||
const options = sendMessageOption
|
||
? JSON.parse(JSON.stringify(sendMessageOption))
|
||
: {}
|
||
options.model = model || options.model
|
||
if (!options.model) {
|
||
throw new Error('No model available for memory extraction call')
|
||
}
|
||
const resolvedModel = options.model
|
||
const { client } = await getClientForModel(resolvedModel)
|
||
const response = await client.sendMessage({
|
||
role: 'user',
|
||
content: [
|
||
{
|
||
type: 'text',
|
||
text: prompt
|
||
}
|
||
]
|
||
}, SendMessageOption.create({
|
||
...options,
|
||
model: options.model,
|
||
temperature: options.temperature ?? temperature,
|
||
maxToken: options.maxToken ?? maxToken,
|
||
systemOverride: systemPrompt ?? options.systemOverride,
|
||
disableHistoryRead: true,
|
||
disableHistorySave: true,
|
||
stream: false
|
||
}))
|
||
return collectTextFromResponse(response)
|
||
}
|
||
|
||
function resolveGroupExtractionModel (presetSendMessageOption) {
|
||
const config = ChatGPTConfig.memory?.group
|
||
if (config?.extractionModel) {
|
||
return config.extractionModel
|
||
}
|
||
if (presetSendMessageOption?.model) {
|
||
return presetSendMessageOption.model
|
||
}
|
||
if (ChatGPTConfig.llm?.defaultModel) {
|
||
return ChatGPTConfig.llm.defaultModel
|
||
}
|
||
return ''
|
||
}
|
||
|
||
function resolveUserExtractionModel (presetSendMessageOption) {
|
||
const config = ChatGPTConfig.memory?.user
|
||
if (config?.extractionModel) {
|
||
return config.extractionModel
|
||
}
|
||
if (presetSendMessageOption?.model) {
|
||
return presetSendMessageOption.model
|
||
}
|
||
if (ChatGPTConfig.llm?.defaultModel) {
|
||
return ChatGPTConfig.llm.defaultModel
|
||
}
|
||
return ''
|
||
}
|
||
|
||
export async function extractGroupFacts (messages) {
|
||
if (!messages || messages.length === 0) {
|
||
return []
|
||
}
|
||
const groupConfig = ChatGPTConfig.memory?.group || {}
|
||
const presetInfo = await resolvePresetSendMessageOption(groupConfig.extractionPresetId, 'group')
|
||
const presetOptions = presetInfo?.sendMessageOption
|
||
const model = resolveGroupExtractionModel(presetOptions)
|
||
if (!model) {
|
||
logger.warn('No model configured for group memory extraction')
|
||
return []
|
||
}
|
||
try {
|
||
const prompts = resolveGroupExtractionPrompts(presetOptions)
|
||
logger.debug(`[Memory] start group fact extraction, messages=${messages.length}, model=${model}${presetInfo?.preset ? `, preset=${presetInfo.preset.id}` : ''}`)
|
||
const text = await callModel({
|
||
prompt: buildGroupUserPrompt(messages, prompts.userTemplate),
|
||
systemPrompt: prompts.system,
|
||
model,
|
||
sendMessageOption: presetOptions
|
||
})
|
||
const parsed = parseJSON(text)
|
||
if (Array.isArray(parsed)) {
|
||
logger.info(`[Memory] extracted ${parsed.length} group facts`)
|
||
parsed.slice(0, 10).forEach((item, idx) => {
|
||
logger.debug(`[Memory] group fact[${idx}] ${formatEntry(item)}`)
|
||
})
|
||
return parsed
|
||
}
|
||
logger.debug('[Memory] group fact extraction returned non-array content')
|
||
return []
|
||
} catch (err) {
|
||
logger.error('Failed to extract group facts:', err)
|
||
return []
|
||
}
|
||
}
|
||
|
||
export async function extractUserMemories (messages, existingMemories = []) {
|
||
if (!messages || messages.length === 0) {
|
||
return []
|
||
}
|
||
const userConfig = ChatGPTConfig.memory?.user || {}
|
||
const presetInfo = await resolvePresetSendMessageOption(userConfig.extractionPresetId, 'user')
|
||
const presetOptions = presetInfo?.sendMessageOption
|
||
const model = resolveUserExtractionModel(presetOptions)
|
||
if (!model) {
|
||
logger.warn('No model configured for user memory extraction')
|
||
return []
|
||
}
|
||
try {
|
||
const prompts = resolveUserExtractionPrompts(existingMemories, presetOptions)
|
||
logger.debug(`[Memory] start user memory extraction, snippets=${messages.length}, existing=${existingMemories.length}, model=${model}${presetInfo?.preset ? `, preset=${presetInfo.preset.id}` : ''}`)
|
||
const text = await callModel({
|
||
prompt: buildUserPrompt(messages, prompts.userTemplate),
|
||
systemPrompt: prompts.system,
|
||
model,
|
||
sendMessageOption: presetOptions
|
||
})
|
||
const parsed = parseJSON(text)
|
||
if (Array.isArray(parsed)) {
|
||
const sentences = parsed.map(item => {
|
||
if (typeof item === 'string') {
|
||
return item.trim()
|
||
}
|
||
if (item && typeof item === 'object') {
|
||
const possible = item.sentence || item.text || item.value || item.fact
|
||
if (possible) {
|
||
return String(possible).trim()
|
||
}
|
||
}
|
||
return ''
|
||
}).filter(Boolean)
|
||
logger.info(`[Memory] extracted ${sentences.length} user memories`)
|
||
sentences.slice(0, 10).forEach((item, idx) => {
|
||
logger.debug(`[Memory] user memory[${idx}] ${formatEntry(item)}`)
|
||
})
|
||
return sentences
|
||
}
|
||
logger.debug('[Memory] user memory extraction returned non-array content')
|
||
return []
|
||
} catch (err) {
|
||
logger.error('Failed to extract user memories:', err)
|
||
return []
|
||
}
|
||
}
|