chatgpt-plugin/models/memory/extractor.js
ikechan8370 8bfce5402f
试验性的记忆功能 (#812)
* feat: memory basic

* fix: chaite ver

* fix: update prompt

* fix: memory cursor and extract prompt

* fix: memory retrieval bug

* fix: memory retrieval bug

* fix: one more attempt by codex

* fix: messages prompt error

* fix: one more time by codex

* fix: metrics by codex

* fix: memory forward

* fix: memory show update time
2025-11-07 16:40:26 +08:00

306 lines
11 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import { SendMessageOption, Chaite } from 'chaite'
import ChatGPTConfig from '../../config/config.js'
import { getClientForModel } from '../chaite/vectorizer.js'
function collectTextFromResponse (response) {
if (!response?.contents) {
return ''
}
return response.contents
.filter(content => content.type === 'text')
.map(content => content.text || '')
.join('\n')
.trim()
}
function parseJSON (text) {
if (!text) {
return null
}
const trimmed = text.trim()
const codeBlockMatch = trimmed.match(/^```(?:json)?\s*([\s\S]*?)\s*```$/i)
const payload = codeBlockMatch ? codeBlockMatch[1] : trimmed
try {
return JSON.parse(payload)
} catch (err) {
logger.warn('Failed to parse JSON from memory extractor response:', text)
return null
}
}
function formatEntry (entry) {
let str = ''
try {
if (typeof entry === 'string') {
str = entry
} else {
str = JSON.stringify(entry)
}
} catch (err) {
str = String(entry)
}
const limit = 200
return str.length > limit ? str.slice(0, limit) + '…' : str
}
function injectMessagesIntoTemplate (template, body) {
if (!template || typeof template !== 'string') {
return body
}
const placeholders = ['${messages}', '{messages}', '{{messages}}']
let result = template
let replaced = false
for (const placeholder of placeholders) {
if (result.includes(placeholder)) {
result = result.split(placeholder).join(body)
replaced = true
}
}
if (!replaced) {
const trimmed = result.trim()
if (!trimmed) {
return body
}
if (/\n\s*$/.test(result)) {
return `${result}${body}`
}
return `${result}\n${body}`
}
return result
}
async function resolvePresetSendMessageOption (presetId, scope) {
if (!presetId) {
return null
}
try {
const chaite = Chaite.getInstance?.()
if (!chaite) {
logger.warn(`[Memory] ${scope} extraction preset ${presetId} configured but Chaite is not initialized`)
return null
}
const presetManager = chaite.getChatPresetManager?.()
if (!presetManager) {
logger.warn(`[Memory] ${scope} extraction preset ${presetId} configured but preset manager unavailable`)
return null
}
const preset = await presetManager.getInstance(presetId)
if (!preset) {
logger.warn(`[Memory] ${scope} extraction preset ${presetId} not found`)
return null
}
logger.debug(`[Memory] using ${scope} extraction preset ${presetId}`)
return {
preset,
sendMessageOption: JSON.parse(JSON.stringify(preset.sendMessageOption || {}))
}
} catch (err) {
logger.error(`[Memory] failed to load ${scope} extraction preset ${presetId}:`, err)
return null
}
}
function resolveGroupExtractionPrompts (presetSendMessageOption) {
const config = ChatGPTConfig.memory?.group || {}
const system = config.extractionSystemPrompt || presetSendMessageOption?.systemOverride || `You are a knowledge extraction assistant that specialises in summarising long-term facts from group chat transcripts.
Read the provided conversation and identify statements that should be stored as long-term knowledge for the group.
Return a JSON array. Each element must contain:
{
"fact": 事实内容,必须完整包含事件的各个要素而不能是简单的短语(比如谁参与了事件、做了什么事情、背景时间是什么)(同一件事情尽可能整合为同一条而非拆分,以便利于检索),
"topic": 主题关键词,字符串,如 "活动"、"成员信息",
"importance": 一个介于0和1之间的小数数值越大表示越重要,
"source_message_ids": 原始消息ID数组,
"source_messages": 对应原始消息的简要摘录或合并文本,
"involved_users": 出现或相关的用户ID数组
}
Only include meaningful, verifiable group-specific information that is useful for future conversations. Do not record incomplete information. Do not include general knowledge or unrelated facts. Do not wrap the JSON array in code fences.`
const userTemplate = config.extractionUserPrompt || `以下是群聊中的一些消息请根据系统说明提取值得长期记忆的事实以JSON数组形式返回不要输出额外说明。
\${messages}`
return { system, userTemplate }
}
function buildGroupUserPrompt (messages, template) {
const joined = messages.map(msg => {
const sender = msg.nickname || msg.user_id || '未知用户'
return `${sender}: ${msg.text}`
}).join('\n')
return injectMessagesIntoTemplate(template, joined)
}
function buildExistingMemorySection (existingMemories = []) {
if (!existingMemories || existingMemories.length === 0) {
return '当前没有任何已知的长期记忆。'
}
const lines = existingMemories.map((item, idx) => `${idx + 1}. ${item}`)
return `以下是关于用户的已知长期记忆,请在提取新记忆时参考,避免重复已有事实,并在信息变更时更新描述:\n${lines.join('\n')}`
}
function resolveUserExtractionPrompts (existingMemories = [], presetSendMessageOption) {
const config = ChatGPTConfig.memory?.user || {}
const systemTemplate = config.extractionSystemPrompt || presetSendMessageOption?.systemOverride || `You are an assistant that extracts long-term personal preferences or persona details about a user.
Given a conversation snippet between the user and the bot, identify durable information such as preferences, nicknames, roles, speaking style, habits, or other facts that remain valid over time.
Return a JSON array of **strings**, and nothing else, without any other characters including \`\`\` or \`\`\`json. Each string must be a short sentence (in the same language as the conversation) describing one piece of long-term memory. Do not include keys, JSON objects, or additional metadata. Ignore temporary topics or uncertain information.`
const userTemplate = config.extractionUserPrompt || `下面是用户与机器人的对话,请根据系统提示提取可长期记忆的个人信息。
\${messages}`
return {
system: `${systemTemplate}
${buildExistingMemorySection(existingMemories)}`,
userTemplate
}
}
function buildUserPrompt (messages, template) {
const body = messages.map(msg => {
const prefix = msg.role === 'assistant' ? '机器人' : (msg.nickname || msg.user_id || '用户')
return `${prefix}: ${msg.text}`
}).join('\n')
return injectMessagesIntoTemplate(template, body)
}
async function callModel ({ prompt, systemPrompt, model, maxToken = 4096, temperature = 0.2, sendMessageOption }) {
const options = sendMessageOption
? JSON.parse(JSON.stringify(sendMessageOption))
: {}
options.model = model || options.model
if (!options.model) {
throw new Error('No model available for memory extraction call')
}
const resolvedModel = options.model
const { client } = await getClientForModel(resolvedModel)
const response = await client.sendMessage({
role: 'user',
content: [
{
type: 'text',
text: prompt
}
]
}, SendMessageOption.create({
...options,
model: options.model,
temperature: options.temperature ?? temperature,
maxToken: options.maxToken ?? maxToken,
systemOverride: systemPrompt ?? options.systemOverride,
disableHistoryRead: true,
disableHistorySave: true,
stream: false
}))
return collectTextFromResponse(response)
}
function resolveGroupExtractionModel (presetSendMessageOption) {
const config = ChatGPTConfig.memory?.group
if (config?.extractionModel) {
return config.extractionModel
}
if (presetSendMessageOption?.model) {
return presetSendMessageOption.model
}
if (ChatGPTConfig.llm?.defaultModel) {
return ChatGPTConfig.llm.defaultModel
}
return ''
}
function resolveUserExtractionModel (presetSendMessageOption) {
const config = ChatGPTConfig.memory?.user
if (config?.extractionModel) {
return config.extractionModel
}
if (presetSendMessageOption?.model) {
return presetSendMessageOption.model
}
if (ChatGPTConfig.llm?.defaultModel) {
return ChatGPTConfig.llm.defaultModel
}
return ''
}
export async function extractGroupFacts (messages) {
if (!messages || messages.length === 0) {
return []
}
const groupConfig = ChatGPTConfig.memory?.group || {}
const presetInfo = await resolvePresetSendMessageOption(groupConfig.extractionPresetId, 'group')
const presetOptions = presetInfo?.sendMessageOption
const model = resolveGroupExtractionModel(presetOptions)
if (!model) {
logger.warn('No model configured for group memory extraction')
return []
}
try {
const prompts = resolveGroupExtractionPrompts(presetOptions)
logger.debug(`[Memory] start group fact extraction, messages=${messages.length}, model=${model}${presetInfo?.preset ? `, preset=${presetInfo.preset.id}` : ''}`)
const text = await callModel({
prompt: buildGroupUserPrompt(messages, prompts.userTemplate),
systemPrompt: prompts.system,
model,
sendMessageOption: presetOptions
})
const parsed = parseJSON(text)
if (Array.isArray(parsed)) {
logger.info(`[Memory] extracted ${parsed.length} group facts`)
parsed.slice(0, 10).forEach((item, idx) => {
logger.debug(`[Memory] group fact[${idx}] ${formatEntry(item)}`)
})
return parsed
}
logger.debug('[Memory] group fact extraction returned non-array content')
return []
} catch (err) {
logger.error('Failed to extract group facts:', err)
return []
}
}
export async function extractUserMemories (messages, existingMemories = []) {
if (!messages || messages.length === 0) {
return []
}
const userConfig = ChatGPTConfig.memory?.user || {}
const presetInfo = await resolvePresetSendMessageOption(userConfig.extractionPresetId, 'user')
const presetOptions = presetInfo?.sendMessageOption
const model = resolveUserExtractionModel(presetOptions)
if (!model) {
logger.warn('No model configured for user memory extraction')
return []
}
try {
const prompts = resolveUserExtractionPrompts(existingMemories, presetOptions)
logger.debug(`[Memory] start user memory extraction, snippets=${messages.length}, existing=${existingMemories.length}, model=${model}${presetInfo?.preset ? `, preset=${presetInfo.preset.id}` : ''}`)
const text = await callModel({
prompt: buildUserPrompt(messages, prompts.userTemplate),
systemPrompt: prompts.system,
model,
sendMessageOption: presetOptions
})
const parsed = parseJSON(text)
if (Array.isArray(parsed)) {
const sentences = parsed.map(item => {
if (typeof item === 'string') {
return item.trim()
}
if (item && typeof item === 'object') {
const possible = item.sentence || item.text || item.value || item.fact
if (possible) {
return String(possible).trim()
}
}
return ''
}).filter(Boolean)
logger.info(`[Memory] extracted ${sentences.length} user memories`)
sentences.slice(0, 10).forEach((item, idx) => {
logger.debug(`[Memory] user memory[${idx}] ${formatEntry(item)}`)
})
return sentences
}
logger.debug('[Memory] user memory extraction returned non-array content')
return []
} catch (err) {
logger.error('Failed to extract user memories:', err)
return []
}
}